The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum
نویسندگان
چکیده
Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components.
منابع مشابه
High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines
Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the 'Chinese Spring' common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers...
متن کاملMolecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum
The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecu...
متن کاملA Review of Genome Sequencing in the Largest Cereal Genome, Triticum aestivum L
Sequencing whole plant genomes has advanced rapidly with the development of next generation sequencing (NGS) technologies and bioinformatics, enabling the study of large and complex genomes such as that of the hexaploid cereal, Triticum aestivum L. (bread wheat). Despite advances, however, confounding factors such as repetitive elements and low polymorphism still hinder sequencing attempts. Iso...
متن کاملMap-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome.
More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of molecular work in the large (1.6 x 10...
متن کاملA genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.)
The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft...
متن کامل